1. What is Keycloak and How can It help me?

2. How do | use keycloak to secure my application the Merce way?
2.1 Keycloak
2.1.1 Downl ing Keycloak

2.1.2 Setting up Keycloak

2.1.2.1 Creating Administrator user
2.1.2.2 Creating a Realm.
2.1.2.3 Creating a Keycloak Client.
2.1.2.4 Creating a Keycloak User
2.1.2.5 Setting Roles in Keycloak
2.1.2.6 Adding Role to the User

2.2 Testing the Keycloak setup using Postman

2.3 Business application
2.4 Test Authentication and Authorization

Reading and understanding the official documentation is essential to installing and using
Keycloak in a secure manner, we highly recommend you follow the detailed information there to
tune the installation and implementation to your specific use case.

Please use this document as a guide.

Some prerequisites for one to utilize this document effectively is basic understanding of Java,
Spring Boot and REST concepts.

The reader should also have a basic understanding of OAuth2.0.

One good reference for OAuth2.0 is hitps://auth0.com/intro-to-iam/what-is-oauth-2

1. What is Keycloak and How can It help me?

Keycloak is an open-source identity and access management solution that provides
authentication, authorization, and single sign-on capabilities for web applications and
services. It allows you to secure your applications by managing user identities,
enforcing access controls, and facilitating seamless user authentication across multiple
systems.

More details about keycloak and its capabilities are on Keycloak’s website
https://www.keycloak.org/

https://auth0.com/intro-to-iam/what-is-oauth-2
https://www.keycloak.org/

Keycloak itself is written in Java and is completely open source. Its code is hosted on Github
and is present here on htips://github.com/keycloak/keycloak

Javadocs are available for those who are interested on the URL
https://www.kevycloak.ora/docs-api/21.1.1/javadocs/index.html

Keycloak also exposes a REST based Admin API via which one can manage all activities of
Keycloak. Reference: https://www.keycloak.org/docs-api/21.1.1/rest-api/index.html

2. How do | use keycloak to secure my application
the Merce way?

One approach to secure Spring/Spring Boot applications is what we’ll discuss here.
There are a few pieces that we need to understand before we begin with this journey.

Keycloak supports multiple authorization frameworks including OpenID Connect, OAuth 2.0
and SAML 2.0. (Ref: https://www.keycloak.ora/)

OAuth2.0 (Ref: https://auth0.com/intro-to-iam/what-is-oauth-2) is an authorization framework
that allows applications to access and use resources on behalf of a user without requiring the
user to share their credentials (such as username and password) with the application.

It provides a secure and standardized way for users to grant permissions to third-party
applications to access their protected resources.

Spring Security is a powerful and highly customizable security framework for Java applications,
specifically those built on the Spring framework.

It provides a comprehensive set of features and APIs to handle authentication, authorization,
and other security-related tasks in a Java application.

It is the de-facto standard for securing Spring-based applications.

(Ref: https://spring.io/projects/spring-security)

So, we'll now use our Spring boot based code with Spring Security using the OAuth2
Framework and Keycloak Server to secure our application.

Keycloak is a separate server that is managed on our network. Applications are configured to
point to and be secured by this server.

Browser applications redirect a user’s browser from the application to the Keycloak
authentication server where they enter their credentials. This redirection is important because
users are completely isolated from applications and applications never see a user’s credentials.

https://github.com/keycloak/keycloak
https://www.keycloak.org/docs-api/21.1.1/javadocs/index.html
https://www.keycloak.org/docs-api/21.1.1/rest-api/index.html
https://www.keycloak.org/
https://auth0.com/intro-to-iam/what-is-oauth-2
https://spring.io/projects/spring-security

Applications instead are given an identity token or assertion that is cryptographically signed.
These tokens can have identity information like username, address, email, and other profile
data. They can also hold permission data so that applications can make authorization decisions.
These tokens can also be used to make secure invocations on REST-based services.

2.1 Keycloak

2.1.1 Keycloak Core Concepts and Terms:

Users
o Users are entities that are able to log into your system.
o They can have attributes associated with themselves like email, username,
address, phone number, and birthday.
o They can be assigned group membership and have specific roles assigned to
them.

o Roles identify a type or category of user.

o Admin, user, manager, and employee are all typical roles that may exist in an
organization.

o Applications often assign access and permissions to specific roles rather than
individual users as dealing with users can be too fine-grained and hard to
manage.

User role mapping
o A user role mapping defines a mapping between a role and a user. A user can be

associated with zero or more roles.

o This role mapping information can be encapsulated into tokens and assertions so
that applications can decide access permissions on various resources they
manage.

Realms
o A realm manages a set of users, credentials, roles.

o A user belongs to and logs into a realm.
o Realms are isolated from one another and can only manage and authenticate the
users that they control.

Clients
o Clients are entities that can request Keycloak to authenticate a user.

o Most often, clients are applications and services that want to use Keycloak to
secure themselves and provide a single sign-on solution.

o Clients can also be entities that just want to request identity information or an
access token so that they can securely invoke other services on the network that
are secured by Keycloak.

There are more concepts which are good to know.
These can be found in the official documentation of Keycloak on

https://www.keycloak.org/docs/latest/server_admin/#core-concepts-and-terms

2.1.2 Downloading Keycloak

Keycloak works on almost all Linux based distribution and windows.

For our case, since most of us developers are on Ubuntu, we’ll proceed with Basic JDK based
setup.

The minimum system and software requirements are updated on the Keycloak website. Please
refer to it before proceeding with installation.
https://www.keycloak.org/getting-started/getting-started-zip

Basic steps are:
1. Download the keycloak zip file.
2. Extract the zip file to some folder. (e.g. unzip keycloak-21.1.1.zip). Note: at the time of
writing this doc, the latest version was 21.1.1, so unzip file keycloak zip file accordingly.
3. Start Keycloak. (bin/kc.sh start-dev)
Note that Keycloak by default starts on port 8080. Ensure it's available.

Note: There are container images also available if you are comfortable with containers.

Docker: https://www.keycloak.org/getting-started/getting-started-docker
Kubernetes: https://www.keycloak.org/getting-started/getting-started-kube

2.1.3 Setting up Keycloak

2.1.2.1 Creating Administrator user

1) Open : http://localhost:8080/

https://www.keycloak.org/docs/latest/server_admin/#core-concepts-and-terms
https://www.keycloak.org/getting-started/getting-started-zip
https://www.keycloak.org/getting-started/getting-started-docker
https://www.keycloak.org/getting-started/getting-started-kube
http://localhost:8080/

o LOAK

o Keycloak

b Adrinistration Consale 3
b Adminisiration Consols [cocumentation 8 Keycloak Project

i} Feport an istue

2) Fill in the form with your preferred username and password.

3) Now go to the default admin console http://localhost:8080/admin

And Login with username and password created earlier.

2.1.2.2 Creating a Realm.

A realm is a space where you manage objects, including users, applications, roles, and groups.
A user belongs to and logs into a realm. One Keycloak deployment can define, store, and
manage as many realms as there is space for in the database.

Realms are isolated from one another and can only manage and authenticate the users that
they control. Following this security model helps prevent accidental changes and follows the
tradition of permitting user accounts access to only those privileges and powers necessary for
the successful completion of their current task.

You create a realm to provide a management space where you can create users and give them
permissions to use applications. At first login, you are typically in the master realm, the top-level
realm from which you create other realms.

You can also consider Realm to be a ‘Tenant

When deciding what realms you need, consider the kind of isolation you want to have for your
users and applications.

For example, you might create a realm for the employees of your company and a separate
realm for your customers. Your employees would log into the employee realm and only be able
to visit internal company applications. Customers would log into the customer realm and only be
able to interact with customer-facing apps.

Another way we can think of creating a realm is by Business Entity for example:

http://localhost:8080/admin

MerceRealm : for Merce internal applications.
NSDLRealm : for NSDL applications.
CDSLRealm : for CDSL applications.
ProteanRealm : for Protean applications.

Key idea is to decide the isolation needed for the use case.

Example of how this can look:

Realm+Client+User=Auth
obj / \
Atrtutes
bhavyag@ _

N R Spring-boot-app | | _ . .o .= =
Spring-boot-app-1 merce.co [-
—

=

--F V.
y
’
. ’ .
Spring-boot-app-2 oK L phpapp L _ . _ . _ . _. rasika@
(Client) °1 merce.co - l
E . - s
A & —
Y ’ .7
-
Cc K e
L ’ -7 mitates
N
. ’ * (Client) merce.co Roles
PO [aumni AT —
K .

Merce Realm /
NSDL Realm /

-7 Protean Realm
NsoL
Angular app

Protean Python ———-—1 /
| P [rmeer] |

Merce —r

Angular app

Out of the box, Keycloak includes a single realm, called ‘Master’ realm.

Master realm - This (default) realm is created during the first Keycloak installation. It
contains the administrator account you created at the first login. By convention, we'll use the
master realm only to create and manage the realms in our system.

Other realms - These realms are created by the administrator in the master realm. In these

realms, administrators manage the users in your organization and the applications they need.
The applications are owned by the users.

Use the following steps to create the first realm.
1) Open the Keycloak Admin Console.
2) Click the word master in the top-left corner, then click Create realm.
3) Enter myrealm in the Realm name field.
4) Click Create.

http://localhost:8080/admin

2.1.2.3 Creating a Keycloak Client.

A Keycloak client refers to an application or service that interacts with the Keycloak server to
obtain authentication and authorization services.

It represents a registered entity that wants to utilize Keycloak's features, such as user
authentication, access control, and single sign-on.

So, we can have a keycloak client for our Spring boot application, another client for say our PHP
application and another client for say our Front end application.

Again, like Realm, there is no defined way to use a Client in Keycloak. Since it is like a
framework, you can decide to use Client in ways you may think is more feasible.

One way to use a Client is to pair it with the type of application since there could be different
requirements of a Front-end application as compared to a backend application.

Steps to create Keycloak Client are as follows:
1) Open the Keycloak Admin Console.
2) Click on master on top right corner and select Realm name, in our case it is myrealm
3) Click on ‘Clients’ in the menu bar on right
4) Click on ‘Create Client’ button
5) Fillin the details as following

Clients » Create client

Create client
Clients are applications and services that can request authentication of a user.

o General Settings

Client type (D OpenlD Connect

ClientID * @ miyclient-zb

Name (& myclient-sh

Deseription (@ my client for springboot app

Always display in c On

conscle (@

6) Click on Next
7) Enable Client Authentication, Authorization as following screenshot:

http://localhost:8080/admin

Clients * Create client

Create client
Clients are applications and services that can request authentication of a user,

1 General Settings Client authentication () o an
e Capability contig Autherization © o on
Authentication flow Standard flow Direct access grants @
[] tmplicit flow @& Service accounts roles @

| | ©Auth 2.0 Device Autherization Grant @

I:l OIDC CIBA Grant §

8) Click on Save.
9) Now, if you go to the ‘Credentials’ tab you will see the client secret as follows:

Chents » Client details

myclie nt-sb openld Connect

Clients are applications and services that can request authentication of a user.

Settings Keys Credentials Rales Client scopes Authorization Service accounts roles Sessions Advanced
Client Authenticator Client Id and Secret -
@

Save
Clentsecrat stesssssssssssssssssssssssssssss o ! Regenerate

istration aceess L] Regenerate
d
token

i1

We'll use this ‘Client secret’ while connecting to Keycloak.
You have now created a Keycloak Client for the spring boot app.

2.1.2.4 Creating a Keycloak User

A keycloak user is the user who uses your application. Any user that will use your application,
will have to be created in Keycloak. Keycloak will manage the user lifecycle.
Following are the steps to create a user in Keycloak:

1) Open the Keycloak Admin Console.

2) Click on master on top right corner and select myrealm
3) Click on ‘Users’ in the menu bar on the right

4) Click on the ‘Add user’ button.
5) Fill in details as following:

Users » Create user

Create user

Email II MY USEM@MEarce.co "
Email verified (& C' Off

First name my

Last name user

Required user actions Select action

@

Groups (3 Join Groups

Cancel

And Click on ‘Create’.

6) Now go to Credentials tab and click on ‘Set password’

Users » User details

myuser

Details Altributy Credentials ke Mapping

ot have a

Ly provider links Sessions

-+

Mo credentials

credentials. You can set password for this user.

Credential Rezet

7) Create a password for this user and click on Save

http://localhost:8080/admin

Set password for myuser

Password *

Password confirmation *

Temporary (&)

Save Cancel

You have now created a user called ‘myuser’ in Keycloak.

8) We'll also create another user ‘myAdminUser’ using the same step as above.
9) So now, we will see two users:

Users

Users are the users in the current realm. Learn more [
User list Permissions

Q, Scarch user =»

Delete user

— Usermnama Email Last nama

iy adiminuse O myadminugerBrece.co e

ITTLESET D myuserBmerce oo user

sarvice-acoount-mycliant-sh [1]

2.1.2.5 Setting Roles in Keycloak

For the authorization part in our spring boot application, we’ll need to create different roles.

A role refers to a predefined set of permissions or access rights that can be assigned to users or
clients. Roles are used to control and enforce authorization policies within the OAuth2
framework.

By assigning roles to users or clients, you can determine what actions they are allowed to
perform and what resources they can access.

There are roles to be created at two levels, Keycloak Client level and Keycloak Realm level.
We'll create roles at “myclient-sb” client which we created above and another role at our
“‘myrealm” realm level.

Then we’ll convert our realm level role to a composite role so that whenever we create a user,
we’ll just need to add one realm level role.

1. Create Client level role
a. Open the Keycloak Admin Console.
b. Click on master on top right corner and select myrealm
c. Click on ‘Clients’ in the menu bar on right
d. Now click on “myclient-sb” Client we previously created.
e. Click on the ‘Roles’ tab.
f. Click on the ‘Create role’ button.
g. Add role name as ‘admin’

Clients > Client details > Create role

Create role
Role name * admin
Description admin: Client level role

Save Cancel

h. Click on Save.
i. Now create another role ‘user’ using the same step as above.

Clients > Clientdetails > Create role

Create role
Role name * user
Description user : Client level role

Save Cancel

j- Now under the client -> Roles tab we can see 2 custom roles we created as
follows:

http://localhost:8080/admin

Clients > Client details

myclient-sb openid connect

Clients are applications and services that can request authentication of a user.

Settings = Keys = Credentials | Roles = Clientscopes = Authorization
Role name Composite
admin False
uma_protection False
user False

Service accounts roles

Sessions Advanced

Description
admin: Client level role

user : Client level role

o Enable

2. Create Realm level role

a.

© Q0o

f.

g.

Open the Keycloak Admin Console.

Click on master on top right corner and select myrealm
Click on ‘Realm roles’ in the menu bar on right

Click on ‘Create role’ button
Create a role ‘app-admin’ as follows:

Realmroles » Create role

Createrole

Role name * app-admin

Description app-admin: Realm level role

Save Cancel

Click on save.
Create a role ‘app-user’ as follows:

http://localhost:8080/admin

h.

Realm roles » Create role

Create role
Role name * app-user
Description app-user: Realm level role

Save Cancel

Now, under Realm Roles, we can see 2 custom roles we created above as
follows:

Realm roles

Fal

Note in above screenshot, we can see that under the “Composite” column, roles
are termed as ‘False’, which means they are not a composite role at this point.

3. Convert Realm level role to a Composite role

a.

To convert Realm role to Composite role, we’ll select a role ‘app-admin’

b. Click on Action on top right corner and click on ‘Add associated roles’ as follows:

C.

app-admin

Here, from the drop down, select ‘Filter by clients’ as follows:

Assign roles to app-admin account

T Filter by realm roles * Q, Search by rele name >

Filber by clients

Description

|_ P -sdmin spp-admare Realm level rals
app-user app-uzer: Rzalm level ol
detani1-rss-myrealm Srrole_defad-mhes}

[affire access $irala_sffire-access)

umia_autharization 3irale_uma_authorization}

d. And select ‘admin’ client level role we previously created as follows and click on
‘Assign’ button:
|

Assign roles to app-admin account x
Y Filter by clients Q, admin x> 1-2 +
\:‘ Name Description
myclient-sb admin admin: Client level role
\:‘ realm-management realm-admin ${role_realm-admin}
1-2 ~
Assign Cancel

e. You can now see the role is now a Composite role, whereby the ‘Composite’
column is visible as ‘True’'.

Realm roles
Realm roles are the roles that you define for use in the current realm. Learn more B

Q search role by name -

Role name Compaosite Description

apg-admin Truie Apg-admin: Reaki e iols
app-Lser Fabe app-user: Realm keval rale

f. We’'ll repeat the steps for ‘app-user role to convert it to a composite role

g. Click on the role ‘app-user’, Click on ‘Action’ on top right corner and select ‘Add
associated roles’

h. Select ‘Filter by clients’ in the drop down

Assign roles to app-user account x

Y Filter by realmroles = Q, Search by role name 2> 1-5 «

Filter by clients
Description

\:| app-admin app-admin: Realm level role
] app-user app-user: Realm level role
D default-roles-myrealm ${role_default-roles}
[T] offline_access ${role_offline-access}
[7] uma_autherizatien ${role_uma_authorization}
1-5 ~
Assign Cancel

i. Select client level role ‘user’

Assign roles to app-user account

Y Filter by clients ~ Q, user

\:‘ Name Description
realm-management Manage-users ${role_manage-users}
realm-management query-users $frole_query-users}
myclient-sb user user : Client level role

realm-management view-users ${role_view-users}

j- Click on Assign to save the role
k. Now we can see both roles are composite role as follows:

Realm roles

Realm roles are the roles that you define for use in the current realm. Learn more &'

Q Search role by name 2>
Role name Composite Description
app-admin True app-admin: Realm level role

app-user True app-user: Realm level role

2.1.2.6 Adding Role to the User

We'll now add the composite role we created to the user so that role will be a part of the user’s
authorization parameters i.e. it'll be a part of users Access Tokens.

1) Open the Keycloak Admin Console.

2) Click on master on top right corner and select myrealm
3) Click on ‘Users’ in the menu bar on the right

4) Select ‘myuser’ the user we previously created

5) Click on ‘Role mapping’ tab

6) Click on ‘Assign role’ button as follows

Users » User details
myuser
Details Attributes Credentials Role mapping Groups Consents Identity provider links Sessions
Q, Search by name > Hide inherited roles Unassign
D Name Inherited Description
D default-roles-myrealm False ${role_default-roles}

7) Select ‘app-admin’ composite role we created in the previous step as follows:

Assign roles to myuser account x
Y Filterby realmroles Q, Search by role name - 1-4 «
D Name Description
D app-admin app-admin: Realm level role
app-user app-user: Realm level role
D offline_access ${role_offline-access}
D uma_autherization ${role_uma_authorization}
1-4 «

8) Click on ‘Assign’ button to assign the role
9) Now you can see the role is assigned to the user ‘myuser’ under the ‘Role mapping’ tab

http://localhost:8080/admin

Users > User details
myuser
Details Attributes Credentials Role mapping Groups Consents dentity provider links Sessions
Q, Search by name > Hide inherited roles Unassign
|7| Name Inherited Description
|_| app-user False app-user: Realm level role
|_| default-roles-myrealm False %{role_default-roles}

10) Now similarly using the same steps as above, we’ll add ‘app-admin’ role to user
‘myadminuser’

Users > User details
myadminuser
Details Attributes Credentials Role mapping Groups Consents dentity provider links Sessions
Q, Search by name > Hide inherited roles Unassign
|_| Name Inherited Deseription
|_| app-admin False app-admin: Realm level role
|_| default-roles-myrealm False $jrole_default-roles}

We have now successfully configured Keycloak Users with associated roles.

2.2 Testing the Keycloak setup using Postman

| am assuming at this point that you have the ‘Postman’ app installed on your local machine. If
not, please google the step to install Postman based on your device.

We'll connect to Keycloak to fetch ‘Access token’.
| am attaching the Postman collection here for the reference. However, we’ll create a new
connection as follows:

Auth admin

raw @ binary @ GraphaL

Bulk Edit

grant_type

scope

Note the URL: http://localhost:8080/realms/myrealm/protocol/openid-connect/token
Here: localhost : It is the host where Keycloak is running

8080: Port on which Keycloak is listening

‘Myrealm’ is the realm we created above.

Following are the parameters which we add in the request body:

client_id: ID of the keycloak client we created above

client_secret : client secret generated by Keycloak [as seen in step 9 of 2.1.2.3]
username : username of the userid trying to login to keycloak

password : password of the userid

grant_type : this can be ‘client_credentials’ or ‘password’. We’'ll use ‘password’
scope : ‘openid’

If all configuration is correct, on sending this request, keycloak will respond with ‘access_token’
and ‘refresh_token’ alongwith expiry and other parameters.

http://localhost:8080/realms/myrealm/protocol/openid-connect/token

Auth admin

-alhost:8080/realms/my!

none @ form-data x-www-form-urlencoded @ raw @ binary @ GraphQL

Description eco Bulk Edit

(4]

G| JcIPEQ]QV

[N < BN <<

Pretty

We'll use this ‘access_token’ for all consecutive requests to authenticate yourself.

Pro-tip: You can check contents of this JWT token, using a site like ‘http://jwt.io’ Following is the
example:

http://jwt.io

JSON Web Tokens -jwtio X | +

C & jwtio

piYXpzeDRxaUhmVVOVNNZER29vazBRING.eyJle
HA10jE20DQB0TAxNTcsImlhdCIGMTY4NDQ40TgT
NywianRpIjoiM2FkNmIwZDItNWFhZi@8NzM3LTh
mYzEtODYyYzcyODEyMDExIiwiaXNzIjoiaHR6cD
ovL2xvY2FsaG9zdDo4MDgwL3J1YWxtcySteXJ1Y
WxtIiwi¥XVkIjoiYWNjb3VudCIsInN1YiI6ImVh
ZDc20TMzLTZiZDALNDYX0CT1iMT1kLWI3ZWQzMTU
40GU4NyIsInR5¢cCI6IkJ1YXJ1lciIsImF6cCI6Im
15Y2xpZW50LXNiTIiwic2Vzc21vb19zdGFBZSI6I
j11INzF1Yz1mLTABMzMtNGMOMC11iYTEWLWU4MWRL
NTVkMzhiMCIsImFjciI6IjEiLCJyZWFsbVShY2N
1c3MiOnsicm9sZXMi01lsiZGVmYXVsdClyb2xlcy
TteXJ1YWxtIiwib2ZmbGluZV9hY2N1c3MiLCJdhe
HAtYWRtaW4iLCJ1bWFfYXVBaG9yaXphdGlvbiJd
fSwicmVzh3VyY2VTYWNFZXNzIjp7Im15Y2xpZW5
OLXNiIjp7InJvbGVzIjpbImFkbWluIl19LCJhY2
NvdW58Ijp7InJvbGVzIjpbImThbmFnZSThY2Nvd
W50IiwibWFuYWd1LWFjY291bnQtbGlua3MilLCJ2
aWV3LXByb2ZpbGUiXX19LCJzY29wZSI6ImIwZW5
pZCBwcm9maWx1IGVtYWlsTiwic21kI joiOWU3MW
VjOWYtMDQzMy®88YzQwLWJhMTAtZTgxZGUTNWQz0
GIwIiwiZW1haWxfdmVyaWZpZWQiOmZhbHN1LCJu
YW11IjoibX1hZG1pbiB1c2VyIiwicHJ1ZmVycmV
kX3VzZXJuYW11IjoibX1hZG1pbnVzZXIilLCJnaX

Crafted by !.:fauthe

by Okta

alg": "RS256",
“typ": "JWT",
"kid": "ITAb2EUJolmopwcUudlRjcazsx4qiHfU_UbvDGookBq"

PAYLOAD:

"exp": 1684499157,
"iat": 1684489857,
"jti": "3ad6b@d2-5aaf-4737-8fc1-862¢72812011",
"iss": "http://localhost:8688/realms/myrealm"”,

"aud": "account"”,

"sub": "ead76933-6bd@-4618-b19d-b7ed31588e87",
"typ": "Bearer”,

"azp": "myclient-sb",

"session_state": "9e71ec9f-B433-4c48-ball-
eB81de55d38b8",
"acr": "1",
"realm_access": {
"roles": [
"default-roles-myrealm",
"offline_access”,
"app-admin”,
"uma_authorization'

]

"resource_access": {
"myclient-sb": {
"roles": [
"admin'

y
I

"arrannt" !

As you can see in the above screenshot, under ‘resource_access’>'myclient-sb’>’roles’>’admin’
Here we can see the client name we created in Keycloak, along with the role of the user ‘admin’
We’'ll use this role for the authorization part in the steps ahead.

2.3 Business application

We'll now create a Spring boot application that will use Spring Security to secure the application
via OAuth and it'll work with Keycloak for Authentication and Role level Authorization.

You can find the entire working code on Github link
[hitps://github.com/merce-bhavyag/sb-kc-demo]

Go to https://start.spring.io/ and we’ll get a new spring boot application.
Nofte: You can also use the latest Spring Boot 3.1.0 as well

https://github.com/merce-bhavyag/sb-kc-demo
https://start.spring.io/

@ start.springio

Project

QO Maven

Spring Boot

Group

Artifact

Name
Description
Package name
Packaging

Java

)
y

@ Gradle - Groovy

QO 3z.11(snAPsHOT) O 3.1.0
Q 2713 (sNAPSHOT) Q 2.7.12

Language

QO Gradle - Kotlin @ Java

Project Metadata

co.merce

TS % g

Meet the Spring team this August at SpringOne.

€ spring initializr

Dependencies ADD DEPENDENCIES... CTRL + B

Q kotin QO Groovy

OAuth2 Resource Server m

Spring Boot integration for Spring Security's OAuth2 resource server features.

-
O 3.0.8 (SNAPSHOT) @ 307 Spring Security

Highly customizable authentication and access-control framework for Spring applications.

OAuth2 Client

Spring Boot integration for Spring Security’'s OAuth2/OpeniD Connect client features.

sb-kc-demo-app

sb-kc-demo-app

Demo project for Spring Boot

co.merce.sh-kc-demo-app

® o O war

Q2 @17 Ou Os

l GENERATE CTRL + <! I | EXPLORE CTRL + SPACE I | SHARE... I

And we’ll click on “GENERATE”

This will download a zip archive “sb-kc-demo-app.zip”

We’ll now use Either Eclipse or STS(Spring Tool Suite) to use this downloaded application.

For this guide, I'm using STS, but steps should be the same for Eclipse.

Extract the ZIP file to a folder
Open STS, Click on File>’Open Projects from File System’ > Browse for the Zip file folder we

downloaded from Spring Initilizr

Import Projects from File System or Archive

Import Projects from File System or Archive
ke j Folder or archiv d OE. ﬁ

Import source: [home/bhavyag/Code/sb-kc-demo-app ~ Directory... Archive...

Select all

Folder Import as Deselect All
v sb-ke-demo-app
1 of 1 selected

Hide already open projects

Close newly imported projects upon completion

Useins ed 5 to:
Search for nested projects
v Detect and configure project natures

Working sets

Add project to working sets New...

select...

Next > Finish

So now, the application will open in the STS and will look as follows:

We’'ll create two packages ‘config’ and ‘controller’ within the ‘co.merce’ package
We'll create config and controllers files under the respective packages

We'll create a new class ‘WebSecurityConfig.java’ under the config package.

This ‘WebSecurityConfig’ file will host all the configuration required for securing the springboot
application.
We'll add the following annotations to the class:

@Configuration : Will mark the class as a configuration for spring boot.
@EnableWebSecurity : This will enable Spring Web Security for the application
@EnableMethodSecurity(securedEnabled = true, jsr250Enabled = true) : This will enable
Method based security annotations and Spring will now look for “@Secured” annotation on
methods and will secure the method accordingly.

Here we’ll add a bean to manage the HTTP requests the spring boot application will receive.

SecurityFilterChain (
http.authorizeHttpRequests (requests —-> requests

.anyRequest ()
.authenticated ()

) &

http.oauth2ResourceServer (cauth2 -> oauth2

Jwt (Jwt -> jwt.jwtAuthenticationConverter (jwtAuthConverter))
)

Cp.sessionManagement (sessionManagement ->

sessionManagement.sessionCreationPolicy (S ~ati v .STATELESS)

http.build() ;

Here, if you note, we have our custom ‘jwtAuthConverter’ class that will extract the role
information from the JWT token of the request.

Payload of a Decoded JWT token looks like this:
{
"exp": 1684504093,
"iat": 1684503793,
"jti": "47fd2933-be33-4fba-bc98-2a83db11a80a",
"iss": "http://localhost:8080/realms/myrealm"”,
"aud": "account",

"sub": "ead76933-6bd0-4618-b19d-b7ed31588e87",
"typ": "Bearer",

"azp": "myclient-sb",
"session_state": "f1c96b22-70eb-4f4c-9e06-f10d28c2cd94",

Ilacrll: ll1ll’
"realm_access": {
"roles": [

"default-roles-myrealm”,
"offline_access",
"app-admin",
"uma_authorization"
]
|3
"resource_access": {
"myclient-sb": {
"roles": [
"admin"

]
3
"account": {
"roles": [
"manage-account”,
"manage-account-links",
"view-profile"
]
}
12
"scope": "openid profile email”,
"sid": "f1c96b22-70eb-4f4c-9e06-f10d28c2cd94",
"email_verified": false,
"name": "myadmin user",
"preferred_username": "myadminuser"”,

"given_name": "myadmin"”,
"nn

"family_name": "user",
"email": "myadminuser@merce.co"

From the above token, we need to extract roles of our client “myclient-sb” which falls under
“resource_access”

Following is the method within the jwtAuthConverter that extracts roles as per above logic:
Collection<? GrantedAuthority>
> resourceAccess;
> resource;
> resourceRoles;

resourceAccess = jwt.getClaim(
(resourceAccess ==
| | (resource = (Map< , >)
resourceAccess.get (properties.getResourceId()))

| | (resourceRoles = (Collection< >) resource.get (
Set.of () ;

resourceRoles.stream()

.map (38
.collect (.toSet());
}

Of course there are other methods which we’ll need in this JwtConverter as follows:

Collection< > a =
jwtGrantedAuthoritiesConverter.convert .

Collection<? GrantedAuthority> b = extractResourceRoles (

Collection< > authorities;

(al=) |
authorities =

Stream.concat (a.stream() ,b.stream()) .collect (

} {

authorities=b.stream() .collect (

JwtAuthenticationToken (jwt, authorities,
getPrincipalClaimName (

}

And

claimName =
(properties.getPrincipalAttribute () !=
claimName = properties.getPrincipalAttribute() ;

}

jwt.getClaim(claimName) ;

We’'ll set the application.yml to set up the configuration as follows:

Ensure you set the correct client secret [as seen in step 9 of 2.1.2.3] in “credentials.secret”
parameter of application.yml

We’'ll now create a TestController and secure the methods via the roles as follows:

{
Logger logger =

(Principal principal) {

logger.info (
;principal.getName ()) ;

t+principal.getName ()) ;

(Principal principal) {

logger.info ()

+principal.getName ()) ;
}

@Sec

@Ge

@

ured ({
viar I

>tMapping (

(Principal principal) {

logger.info ()

+principal.getName ()) ;

}

Now once we have everything set up, we can run the application and test if our authentication
and authorization works.

Again, the entire code can be downloaded from the github repository
[https://github.com/merce-bhavyaa/sb-kc-demo]

2.4 Test Authentication and Authorization

We'll use the Postman application to test this as we did in Step 2 before.
You can use the postman collection from the link below to test the setup.

[hitps://github.com/merce-bhavyag/sb-kc-demo/blob/main/postman/Keycloak-Merce-Way.postm
an_collection.json]

This is how the test looks:

Auth admin

Iocalhos

oco Bulk Edit

(<<

WG| JCIPEQIQV

(<IN <

5

We'll pass the access_token to subsequent requests
So request to our endpoint “/admin” from myadminuser will work.

https://github.com/merce-bhavyag/sb-kc-demo
https://github.com/merce-bhavyag/sb-kc-demo/blob/main/postman/Keycloak-Merce-Way.postman_collection.json
https://github.com/merce-bhavyag/sb-kc-demo/blob/main/postman/Keycloak-Merce-Way.postman_collection.json

Bulk Edit Presets -

manRuntime/7.32.2

-+
gzip, deflate, br
keep-alive

bearer eyJhbGciOi. "NilsInRScClgOiAiSIdUliwia 2 IkliABICJIVEFIMKVV

However, the same request to endpoint “/user” will not work

Bulk Edit Presets -
ated when request

ated when request

gzip, deflate, br

keep-alive

bearer eyJhbGc NilsInR5cCIgOiAiSIdUliwia 2 IkliABICJIVEFIMKVY

As we can see in the response as “403 Forbidden”

Similarly, access_token with user “myuser” will work with endpoint “/user” and will not work with
endpoint “/admin”

Auth User

8080/realm penid-connect/token

Body
none form-dats v urles e J binary GraphQL

alue D E Bulk Edit

<]

myclient-sb

username

(CI< BN

grant_type

scope openid

(<]

EvP10E! Nyy6 WG] JCIPEQJQV

<]

Pretty

BulkEdit Presets -
Postman-Token (& ed when request

Host @ calculated when requ:

<]

PostmanRuntimef.

a

e

a

gzip, deflate, br

(<<

keep-alive

bearer eyJhbGciO| cClg(dUliwia2IklAGICJJV

4]

We’ll get Forbidden error for endpoint “/admin”

User

http:/flocalhost:80!

Heade

Bulk Edit Presets -

ed when reques

<]

ulated when req|

<]

Runtime/7.32.2

(<]

gzip, deflate, br

(<]

keep-alive

(<]

Authorization bearer eyJhbGCiOLISUZITNIISINRSCCIgOIAISIdUliwiaZIKIABICJJVEFIMKVY

Pretty

So, we have now secured our endpoints with correct roles along with authentication based on
Oauth2 framework using Keycloak.

