
Remiges ServerSage
Managed infra service

Product setup

1 Background
We wish to offer ServerSage, a managed infrastructure (servers, services, etc) service as a
productised service (PSvc) to our customers. This means that once we have the productised
service (PSvc) ready, we will have an exact set of collateral, tools and processes for

● BoM for quoting for a new lead

● Setup

● Operation

● Incident handling and escalations

This note describes what we need to do as homework to launch ServerSage. This
“homework” is being treated as an internal asset-building project.

When this project is completed, the following outcomes will be achieved:

● We will have a detailed two level setup checklist for
○ each type of server and each type of (commonly found) service for the setup

tasks. The first-level checklist will be the server/service types we deal with,
and the second-level list will be the list of attributes we monitor under each.

○ Each repeatable additional service (e.g. patch application, software upgrade,
data backup and restore) which can be provided as add-on PSvc with the
basic monitoring service

● We will have a similar two-level training manual for imparting training to L1, L2, and
L3 infra engrs to monitor, drill down, and escalate for each type of server/service.

● We will have a set of one-page service descriptions, one per PSvc
● We will have a pre-sales checklist to assist our pre-sales chaps about what each

PSvc includes or excludes

2 Types of servers/services
Servers:



● Linux
● Windows

Auxiliary components:

● Connectivity
● Network throughput

Services and layered products:

● Tomcat
● NGINX
● Apache HTTPd
● MySQL
● Postgres
● MS SQL Server
● MongoDB
● Oracle
● MS IIS
● MS Active Directory
● Redis
● Keycloak
● Red Hat SSO
● Red Hat JBoss
● WildFly
● Kafka
● RabbitMQ
● IBM MQ
● MS MQ

Layered products we will add later, because they are either growing in popularity or are
waning in popularity:

● IBM DB/2
● Kubernetes
● VMware

3 Monitoring framework
We intend to offer our service by using a foundation of Prometheus plus agents for
monitoring. We will use Grafana as our monitoring UI, plus any other visualisation tools we
may need later.

All data will be stored in the database which Prometheus uses.

We will program alerts into each attribute being monitored, so that when watermarks are
breached, SMS and emails will be pushed out by the system.



The client will provide infrastructure in their cloud or on-prem DC to set up and operate this
monitoring stack, and will provide connectivity to the Internet to let us push out SMS and
emails.

We will develop our own custom reporting UI which will generate canned reports for
governance purposes, for archival and filing to accompany invoicing, and for ad hoc
requests from the client.

4 Parameters to be monitored
This section will list the health parameters which need to be monitored for each server or
service, together with the tools and processes needed for such monitoring.

Parameters marked in dark red are ones for which we will need to write agent software.
Some of the agents will be really small shellscripts. We are stating, till we are proved wrong,
that all the parameters listed below, which are in black, will be logged by standard agents
which are readily available, and all the ones in dark red will need to be developed as
Prometheus agents.

4.1 Linux OS
● CPU load
● RAM usage
● Swap space usage
● Number of processes running:

○ Total
○ Specific processes

● Specific list of network ports where listeners are listening (netstat -lnp | grep for
specific services

● Disk space available
● Free inodes
● Alert messages whenever OS reboots
● Disk I/O volumes
● Network interface traffic volumes
● Grep for specific lines or errors automatically in dmesg
● Change monitor (not in Prometheus):

○ a daily log of versions of kernel and all applications, to track changes due to
upgrades/patches

○ config files
○ Mounted file systems list
○ IPtables ruleset
○ Number of CPU cores (needed for VMs)
○ a file system integrity and change detection daemon, which will log all

changes to the file system metadata (new files, changes to file attributes, etc)



4.2 Windows OS
● CPU, RAM, swap, nprocesses, listeners on network ports, disk space available, free

FS nodes, disk I/O volumes, network interface traffic volumes, alert when OS
reboots, change monitor: as above

4.3 Connectivity
● Outward connection tests, with record of time taken

○ Ping: north-south and east-west:
■ latency
■ packet loss
■ jitter

○ HTTP requests (via proxy server, if proxy is active)
○ Connection to DB server(s)

4.4 Network throughput
● Test access and do bulk data transfer, measure the throughput with

○ Specific monitoring URLs set up by us on the Internet
○ East-west with the same DC

4.5 Web servers: Apache HTTPd, NGINX
● Number of connections: total and active
● Number of processes/threads
● Probe the service and measure the response time and status

4.6 Application servers: Tomcat, JBoss, MS IIS, WildFly
● Number of connections: total and active
● Number of processes/threads
● Probe the service and measure the response time and status
● JVM memory consumed (for Tomcat, JBoss, etc)
● (from logfile): time taken for each GC round, and whether partial or full GC

4.7 Database services
The set includes, for now: MySQL, MS SQL, Postgres, Oracle, and MongoDB.

● Number of connections: total and active
● Number of processes/threads
● Probe the service and measure the response time and status
● Memory consumed by server (will be DB specific)
● Change monitor (not in Prometheus):

○ Number of tables
○ Number of rows in the top N largest tables
○ Persistent data size on disk



● Provide a wrapper script to do VACUUM ANALYZE and log it (DB specific)
● Count of active locks
● Replication status:

○ When did the last snapshot replicate?
○ Status of snapshot application on replica server: OK or error

● (from logfile) Count of slow-running queries in the last minute

4.8 Directory services and cache: MS AD, Redis
● Number of connections: total and active
● Number of processes/threads
● Probe the service, measure the response time and status
● Size of data in the service (nrows in cache, etc)

4.9 Authentication services: Keycloak, RH SSO
● Number of connections: total and active
● Number of processes/threads
● Probe the service, attempt an authentication, measure the response time and status

4.10 Message bus: Kafka, RabbitMQ, MS MQ, IBM MQ
● Number of connections: total and active
● Number of messages in each queue
● Run a test producer and test consumer, measure the response time and status
● Run a test consumer for all pub-sub services, track the number of messages being

seen per queue per minute

5 Action plan for product setup
This section specifies how we will develop the PSvc. This is equivalent to the WBS for the
product-creation project.

We assume that we have one client, and we will deliver our PSvc bouquet in parallel with
delivering service to them. The rollout can be done in chunks as structured below.

5.1 Project kick-off
1. Discuss with a client and prepare a rollout plan
2. Make an inventory of entities to support
3. Get resources allocated for running our monitoring system in their DC
4. Set up Prometheus on the server allocated
5. Test outgoing SMS and email alerts, collaborate with client to enable it

Do not actually start any monitoring agents at this stage, just set up the monitoring
infrastructure. No actual useful service delivery to the client happens at this stage.



5.2 L1 support team setup
6. Set up agents for all the parameters of all the servers/services which are in black in

the list above
7. Define the watermarks for each parameter, test the alerts
8. Train our L1 team to note all the alerts which come out, and write the action plan for

what they need to do in response to each alert
9. Write the training manual for the L1 team with all these alerts and their responses.

5.3 Additional monitoring tools development
10. Execute a software development project to develop all the agents for the parameters

written in red above. Develop in sprints:
10.1. Roll out new agents
10.2. Set watermarks for the agents
10.3. Test alerts
10.4. Train the L1 team in the new agents
10.5. Update the training manual with the new agents

11. Hand over full documentation of monitoring tools and parameters to the client.

5.4 L2 support team setup
12. Train the L2 team for L1 support:

12.1. Familiarise them with L1 tasks, tools and processes
12.2. Assign them to work at L1 level in the client team

13. Train the L2 team for scheduled tasks (OS patching, software upgrades, ad hoc
queries and reports, etc). Each scheduled task becomes an independent PSvc,
supplementary to the main PSvc of managed infra.

13.1. Write the one-page specification for the supplementary PSvc which covers
this task

13.2. Assign them to perform one round of the scheduled tasks on client systems
13.3. Update the training manual for this task
13.4. Write the one-page PSvc spec for the task

14. Hand over updated documentation to the client, with all the added tasks and PSvc.

It is key that the L2 team members actually work at L1 level delivering actual service to the
client, as part of their training for L2 tasks. This approach is a fundamental orientation
method to sensitise higher-level team members to support challenges, tools and processes.

5.5 L3 team setup
15. Train the L3 team:

15.1. Familiarisation training for them in the L1 and L2 tasks, tools and processes
(one week)

15.2. Assign them to work at L1 level in the client team (two weeks). The rationale
here is the same as for L2 team members working at L1 for two weeks.

15.3. Train them to set up and configure all the software the client is using (e.g.
Apache, Tomcat, Postgres, etc) (X weeks)



15.4. Train them to set up and configure the full monitoring stack and all agents
(two weeks)

15.5. Auxiliary training in OS diagnostics, DB diagnostics, etc, etc (four weeks)
16. Update training manuals and include the L3 material.

5.6 Control process creation
17. Develop process documents for managing and monitoring the current team:

17.1. What data will the PM of this team monitor?
17.2. What tools and processes (ticketing system, etc) will the L1/L2 team use?
17.3. Daily/weekly/monthly reviews which the PM will do with the team?
17.4. What will be the governance process and reports shared by the PM with the

client?

5.7 Collateral creation
18. Develop pre-sales tech documentation
19. Develop and deploy web pages
20. Polish the one-page spec documents for the PSvc bouquet
21. Decide commercials.

This completes the project.

6 Project setup timeline
The project blocks do not need to be executed in sequence. The following rough Gantt chart
shows how the project can be set up and taken to full-fledged service delivery, given
sufficient resources.

PROJECT BLOCKS GANTT (weeks)
W1 W2 W3 W4 W5 W6 W7 W8 W9

Engagement kick-off

L1 support team setup

Additional tool development

L2 support team setup

L3 team setup

Control process design

Collateral creation



The customer will begin to see service delivery roughly from W3 or W4, when the L1 team
becomes active. The other teams will take more time, but the service may begin, without full
tools and processes, by W3 or W4.

7 Outcomes of this setup journey
At the end of this journey of 9-10 weeks, the company will have built the following assets:

● There will be a set of PSvc spec pages, one A4 page per PSvc, describing all the
productised services we offer in this area. The top level spec will be for ServerSage,
and the supplementary ones will be for ServerSage PatchIt (OS patch management),
ServerSage Dataplus (data backups and replication), ServerSage MoveUp
(controlled software upgrade), ServerSage HardCore (technical interventions),
ServerSage ServerPlus (new servers being set up), ServerSage FloatBox
(Kubernetes container-based application management), and so on.

● There will be marketing collateral associated with these PSvc, including web pages
and technical white papers

● There will be client testimony from our first client, which we can show at other
meetings

● There will be training manuals for L1, L2 and L3 for the entire stack of PSvc in the
managed infra area.

● There will be a live team whose members can absorb small numbers of new entrants
to provide them apprenticeship experience for other client accounts.

● There will be a set of trained trainers who can train new teams for future client
contracts.

● We will have the management, control and governance processes in place by which
a PM can reliably and efficiently deliver this service to new clients.

* * * * *




